Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[μ_{2}-trans-1,2-di-4-pyridyl-ethylene- $\kappa^{2} N: N^{\prime}-\mu_{2}$-sulfato$\kappa^{2} O: O^{\prime}$-zinc(II)]

Yi-Cheng Shen, Zhao-Ji Li, Ye-Yan Qin and Yuan-Gen Yao*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: yyg@ms.fjirsm.ac.cn
Received 29 January 2007
Accepted 12 February 2007
Online 10 March 2007
The title compound, $\left[\mathrm{Zn}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]_{n}$, features a layered structure based on $\left[\mathrm{Zn}\left(\mathrm{SO}_{4}\right)\right]_{n}$ spirals linked by 1,2-di-4pyridylethylene (bpe) ligands, with the tetrahedral Zn and S atoms lying on twofold axes. The bpe ligands are centrosymmetric. The layers are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

There has been considerable recent interest in the design and synthesis of supramolecular complexes due to their novel structural architectures and favourable properties in such fields as ion exchange, adsorption, non-linear optics and magnetism (Noro et al., 2000; Yaghi et al., 1998). Organic N-donors, such as bipyridine or related species, are often chosen to fabricate these complexes (Hagrman et al., 1999). The trans-1,2-di-4pyridylethylene ligand (bpe) is also an attractive choice due to its multifunctional linking groups (Carlucci et al., 2003; Hagrman et al., 1998). Doubly charged anions such as sulfates are often known to enter the inner coordination sphere of metal complexes. Some examples of polymeric species containing both $\mathrm{SO}_{4}{ }^{2-}$ anions and bpe ligands have been reported in recent years, including one-dimensional (Li et al., 2005; Hu et al., 2005), two-dimensional (Hagrman et al., 1998)

(I)
and three-dimensional structures (Carlucci et al., 2003; Lee et al., 2005; Sudik et al., 2006). All of them have water molecules and metal centres which often adopt octahedral geometry. Few examples report the combination of a tetrahedral metal centre and the tetrahedral $\mathrm{SO}_{4}{ }^{2-}$ anion, with the potential for four-connected structural topologies. In this paper, we report
such a novel two-dimensional coordination polymer, the title compound, $\left[\mathrm{Zn}\left(\mathrm{SO}_{4}\right) \text { (bpe) }\right]_{n}$, (I).

The structure of (I) features a layered structure based on $\left[\mathrm{Zn}\left(\mathrm{SO}_{4}\right)\right]_{n}$ spirals linked by bpe ligands. Both Zn and S atoms are on special positions with twofold symmetry, and the centre of inversion is located at the centre of the bpe ligand (Fig. 1). Thus, the Zn atom is coordinated by two O atoms from different $\mathrm{SO}_{4}{ }^{2-}$ anions and two N atoms from two symmetryrelated bpe ligands. Each $\mathrm{SO}_{4}{ }^{2-}$ anion provides two O atoms to bridge two Zn atoms, with a $\mathrm{Zn} \cdots \mathrm{Zn}$ separation of 4.932 (2) \AA. The tetrahedral $\left[\mathrm{ZnO}_{2} \mathrm{~N}_{2}\right]$ groups and tetrahedral $\mathrm{SO}_{4}{ }^{2-}$ anions are connected alternately, resulting in spirals along the b axis; the resulting spirals are further linked by the bpe ligands, forming a wave-like layer (Fig. 2). The $\mathrm{Zn} \cdots \mathrm{Zn}$ distance separated by the bpe ligand is 13.240 (2) \AA. The two pyridine rings of the bpe ligand are parallel, as required by symmetry, with an interplanar distance of 0.546 (1) A. As shown in Fig. 2, the sulfate -Zn spiral runs along the b axis, while the bpe ligands bridging the Zn atoms form a zigzag chain. The average best planes through the bpe ligands intersect the (004) plane through the sulfate- Zn spiral at 64.1°.

The layers are linked to complete the final three-dimensional structure by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between two adjacent layers (Fig. 3 and Table 2), via the uncoordinated O1 atoms of the $\mathrm{SO}_{4}{ }^{2-}$ anions and two C atoms of two bpe ligands in an adjacent layer.

Figure 1
A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The centre of inversion is labelled with the letter i. [Symmetry codes: (a) $1-x, y, \frac{1}{2}-z$; (b) $1+x, y, z$; (c) $-x, y$, $\frac{1}{2}-z$; (d) $\frac{3}{2}-x, \frac{1}{2}-y,-z$.]

Figure 2
The layered structure of (I), showing the spirals bridged by bpe ligands. H atoms have been omitted for clarity.

Some $\left[\mathrm{Zn}\left(\mathrm{SO}_{4}\right)\right]^{2-}$ structures containing the bpe ligand have been reported (Tong \& Chen, 2000; Kondo et al., 1999; Lee et al., 2005). In these structures, the Zn atom adopts an octahedral geometry and the (bi)pyridine ligands link the $\mathrm{Zn}-\mathrm{SO}_{4}{ }^{2-}$ chains to give three-dimensional structures. In the mixed bpe- $\mathrm{SO}_{4}{ }^{-}$system; the title compound appears to be the first layered structure containing spiral substructures and simple $\mathrm{Zn}^{\mathrm{II}}$ tetrahedral units.

Figure 3
The packing structure of (I). Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as dashed lines (see Table 2).

Experimental

For the hydrothermal reaction, $\mathrm{ZnSO}_{4}(1.0 \mathrm{mmol})$, trans-1,2-di-4pyridylethylene $(1.0 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ were placed in a Parr Teflon-lined stainless steel vessel $(20 \mathrm{ml})$, the vessel was sealed and heated to 433 K for 3 d , then cooled at a rate of $0.5 \mathrm{~K} \mathrm{~min}^{-1}$, producing colourless crystals of (I) (yield 63%, based on Zn).

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$
$M_{r}=343.68$
Monoclinic, C2/c
$a=4.9322(2) \AA$
$b=15.3739(5) \AA$
$c=16.4044(5) \AA$
$\beta=92.388(2)^{\circ}$
Data collection
Bruker SMART CCD area-detector
diffractometer
Absorption correction: empirical
(using intensity measurements)
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.600, T_{\text {max }}=0.800$

Refinement

```
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037\)
\(w R\left(F^{2}\right)=0.077\)
\(S=0.91\)
1553 reflections
```

$V=1242.82(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.16 \mathrm{~mm}^{-1}$
$T=273$ (2) K
$0.24 \times 0.14 \times 0.10 \mathrm{~mm}$

5508 measured reflections 1553 independent reflections 1106 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.058$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA3040). Services for accessing these data are described at the back of the journal.

References

Carlucci, L., Ciani, G., Proserpio, D. M. \& Rizzato, S. (2003). CrystEngComm, 5, 190-199.
Hagrman, D., Hammond, R. P., Haushalter, R. \& Zubieta, J. (1998). Chem. Mater. 10, 2091-2100.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.
Hu, H.-L., Suen, M.-C., Yeh, C.-W. \& Chen, J.-D. (2005). Polyhedron, 24, 14971502.

Kondo, M., Shimamura, M., Noro, S., Yoshitomi, T., Minakoshi, S. \& Kitagawa, S. (1999). Chem. Lett. pp. 285-286.

Lee, J. Y., Hong, S. J., Kim, C. \& Kim, Y. (2005). Dalton Trans. pp. 3716-3721.
Li, X.-H., Xiao, H.-P. \& Yang, S.-Z. (2005). Acta Cryst. C61, m112-m114.
Noro, S., Kitagawa, S., Kondo, M. \& Seki, K. (2000). Angew. Chem. Int. Ed. Engl. 39, 2081-2084.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT (Version 5.0) and SHELXTL (Version 5.05). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sudik, A. C., Cote, A. P., Wong-Foy, A. G., O'Keeffe, M. \& Yaghi, O. M. (2006). Angew. Chem. Int. Ed. 45, 2528-2531.
Tong, M. L. \& Chen, X. M. (2000). CrystEngComm, 2, 1-3.
Yaghi, O. M., Li, H., David, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.

